CubeServ Blog
Bleiben Sie auf dem neuesten Stand, rund um das Data Driven Business mit Tools für Analytics von SAP & Co. und verpassen Sie keine Neuigkeiten, Downloads & Veranstaltungen.

Das Internet der Dinge, Big Data und eine Fischertechnik-Fabrik – Teil 6: Hadoop vom ABAP aus ansprechen: die GLUE-Middleware von Datavard

Im vorherigen Teil wurden Daten von Steuergeräten in ein CSV-File geschrieben, dies wurde per Kafka in Hadoop importiert und via Hive-Adapter bzw. Impala-Adpater in einer HANA-Datenbank gelesen. Diese Adapter stellen eine komfortable Möglichkeit dar, um auf die Hadoop-Daten lesend zuzugreifen.

Diese Adapter ermöglichen allerdings nicht einen schreibenden Zugriff auf die Tabellen. Will man z.B. Daten, die nicht mehr besonders wichtig sind, aber dennoch nicht gelöscht werden sollen („cold data“) in das Hadoop verschieben, so geht das nicht über diese Adapter.

Eine einfache Möglichkeit, Daten zwischen einem ABAP-System und Hadoop hin- oder herzuverschieben, bietet die Middleware GLUE, die von unserer Partnerfirma Datavard entwickelt und vertrieben wird. Sie bietet die Möglichkeit, vom ABAP aus Tabellen in Hadoop zu definieren (diese heissen dann GLUE-Tabellen) und zwar so ähnlich wie man das in der SE11 macht. Der Inhalt dieser Tabellen lässt sich so einfach wie mit der SE16 anzeigen, und auch das Schreiben in diese Tabellen ist sehr einfach. Die GLUE-Software setzt einen Applikationsserver auf Linux voraus, es ist aber keine HANA-Datenbank zwingend vorausgesetzt, die Software funktioniert auch auf klassischen Datenbanken.

Ein Beispiel: nach erfolgreichem Import per ABAP-Transportaufträge und nach entsprechender Konfiguration, steht die Transaktion /DVD/GLUE als zentraler Einstiegspunkt zur Verfügung:

Im Data Dictionara lässt sich z.B. eine Tabelle ZCSSENSOR definieren:

Nach Aktivierung findet sich diese Tabelle dann im Hadoop wieder:

Ebenso einfach kann der Inhalt dieser Tabelle im ABAP zur Anzeige gebracht werden:

Wie wurden nun diese Daten, die man hier sieht, in diese Tabelle gebracht? In /DVD/GLUE findet sich die Extraktor-Workbench. Hier kann man eine Art Transformation z.B. zwischen einer ABAP-Tabelle aus dem DDIC und einer GLUE-Tabelle definieren:

Zusätzlich zu diesem Extraktor (er entspricht in etwa einer Transformation) wird eine Variante definiert (sie entspricht in etwa einem DTP). Diese Variante kann dann als Job eingeplant werden und führt dann den Datentransfer durch. Nach der Durchführung kann man im entsprechenden Job-Log sehen, wie der Transfer durchgeführt wurde (hier am Beispiel der Tabelle zcssensorl):

Wie früher im Blog bereits erwähnt, benötigt man im Allgemeinen nicht nur einen Austausch von Daten, sondern auch eine Orchestrierung von Ereignissen. GLUE bietet dabei die Steuerung zentral aus dem ABAP heraus an. Mit Hilfe des Script Editors können im ABAP Befehle an das Hadoop definiert werden, z.B.

Und diese Befehle dann auch aus dem ABAP heraus gestartet werden:

Insgesamt bietet GLUE einen komfortablen Weg, aus dem ABAP heraus Hadoop anzusprechen und zu benutzen. Dem Anwender eröffnet sich damit die Hadoop-Welt, ohne dass er sich tief in die Einzelheiten dieser Technik einarbeiten muss.

Newsletter abonnieren

Bleiben Sie auf dem neuesten Stand, rund um das Data Driven Business mit Tools für Analytics von SAP & Co. und verpassen Sie keine Neuigkeiten, Downloads & Veranstaltungen. 

Autor
Expert Team

Blog Artikel unserer Experten

graph

Advanced Analytics mit R: Eine Übersicht

In diesem Blog zeigen wir, wie einfach es ist, Advanced Analytics-Funktionen in R zu nutzen. Wir konzentrieren uns auf verschiedene Diagrammtypen, Regressionsanalysen mit R und Time Series Forcecasts mit R.

Die Zeitdimension in der SAP Data Warehouse Cloud

Mit der Data Warehouse Cloud Version 2020.14 hat SAP die Einbindung von Zeitdimensionen ermöglicht. Warum ist die Zeitdimension so wichtig? Zuvor waren in den zu ladenden Daten für die SAP Data Warehouse Cloud viele Aggregationsebenen einer Datumsspalte erforderlich, z.B. für eine separate Spalte «Quartal» oder

SAP Data Warehouse Cloud – Erfahrungen beim Aufbau eines Datenmodells

Sie verwenden Einkaufsdaten in Ihrem Reporting?  Profitieren Sie von unserem kostenlosen Template!Sie benötigen weitere Daten?  Profitieren Sie von unserer Erfahrung!SAP Data Warehouse Cloud ermöglicht zentrale Datenbestände leicht und intuitiv zu erweitern. Einführung in die SAP Data Warehouse Cloud (DWC) Die SAP Datawarehouse Cloud Lösung ist

Advanced Analytics

Wie Business Analytics erfolgreich gestalten?

Business Analytics einfacher ✅ und effektiver ✅ zu gestalten, ist herausfordernd. Ich stelle mit dieser Blog(serie) meine Lösungsansätze zur Diskussion. ✌

SQLscript Lösungsmuster

Lange danach gesucht? Jetzt gefunden! Unsere Übersicht von typischen Problemen und Lösungen im Bereich von HANA SQLscript.  Die Lösungsmuster reichen dabei von rein sprachlichen Problemen (z.B. „mit welchem Sprachelement ermittle ich den ersten Eintrag“) über formale Probleme (z.B. „wie wandle ich in SQLscript Zeitmerkmale um“)

Die SAP Data Warehouse Cloud – ein neuer grosser (?) Wurf (Teil 2)

Administration als aller Analysis Anfang In einem neuen leeren System sind zunächst immer einige administrative Schritte notwendig, zum Glück sind es in der SAP Data Warehouse Cloud nur einige wenige, die man unbedingt erledigen muss. Natürlicherweise beginnt es mit der Userverwaltung. Das Anlegen neuer User

Die SAP Data Warehouse Cloud – ein neuer grosser (?) Wurf (Teil 1)

Was ist die SAP Data Warehouse Cloud? Wer einen Blick auf die Zukunft von SAP Produkten werfen möchte, der besitzt mit der Agenda der SAP Teched (https://events.sap.com/teched/en/home) eine ganz brauchbare Glaskugel, zumindest für die nähere Zukunft. Auf dieser Agenda zeigt sich, dass SAP mit Nachdruck

Das Internet der Dinge, Big Data und eine Fischertechnik-Fabrik – Teil 5: Visualisierung mittels CalculationView und SAP Cloud for Analytics

In den vorherigen Teilen dieses Blogs wurde gezeigt, wie die Sensordaten der Fabriksimulation schliesslich als Tabelle (genauer: als Tabellenlink) in der SAP HANA verfügbar gemacht wurde. Der nächste Schritt wäre nun beispielsweise in der HANA einen gescripteten (oder alternativ auch graphischen) CalculationView anzulegen, der die